Sapphire Irrigation Consulting

Peter Smith
0455973780
sapphireirrig@gmail.com
South East LLS
Farm Water Course
Designing and installing a system
February 2020

WATER RETICULATION

- Improves quality and efficiency
- Should originate from most reliable supply
- Avoids stock losses from bogging
- More efficient feed utilisation
- Better to have water closest to feed

RETICULATION DESIGN

- Design depends on application, topography, location
- Seek professional advice for design and construction
- System needs to deliver maximum daily demand - check flow rates
- Tanks should be large enough to supply the maximum daily demand, plus a few days
- Locate tanks on a level site - but don't cut and fill

RETICULATION DESIGN - PEAK DEMAND

- Rule of thumb: system should deliver within 4 hours
- Livestock water together, usually morning or evening, creating peak demand period
- Divide total daily water use for mob by 240 minutes (4 hours)

Peak flow requirement $(\mathrm{L} / \mathrm{min})=($ no. stock x daily requirement $) \div 240$

RECOMMENDED INFLOW AND TROUGH CAPACITY

(Farm Water AgGuide Table 21, p.96)

Stock type	Inflow (L/min/head)	Volume (L/head)
Cattle	2.5	5
Sheep	0.25	1
Horses	1.8	5

Round trough holds ~1500 L
5 m Long trough holds $\sim 750 \mathrm{~L}$

ACTIVITY - PEAK FLOW RATE

What peak flow rate will be required?

- Bob plans to contain his sheep in summer
- He has 500 cattle and 1800 sheep

Peak flow requirement $(\mathrm{L} / \mathrm{min})=$ no. of stock x daily requirement $\div 240$

ACTIVITY - PEAK FLOW RATE

What peak flow rate will be required?

- Bob has 500 cattle and 1800 sheep

$$
\begin{aligned}
\text { Peak flow requirement } & =\text { no. of stock } x \text { daily requirement } \div 240 \\
& =\frac{(500 \times 2.5)+(1800 \times 0.25)}{240} \\
& =7.1 \mathrm{~L} / \mathrm{min}
\end{aligned}
$$

PUMPS

\triangle Pump suitability depends on:

- pumping volumes
© pumping duty
- water source \& water quality

๑ available power

PUMP DUTY

-The term "pump duty" outlines the operating conditions of a pump to do a certain job
-Pump duty has two components:
Othe head or pressure
Metres of head
$\Delta \mathrm{kPa}$ or psi
Othe flow rate or discharge
Δ litres per second (L/s)
Δ litres per minute (L / m)
© kilolitres per hour (kL/hr) © Etc.

Head or Pressure
 (FW Ag Guide ch.5)

- potential energy available to move water from one point to another
- described in two ways:

Head or Pressure

(FW Ag Guide ch.5)

TYPES OF PUMPS

(AgGuide ch.6)
-Hydrodynamic (centrifugal) pumps:

- radial flow pumps - high head, low flow
- mixed flow pumps - medium head, high flow
© turbine pumps - low head, very high flow

© positive displacement pumps - very high head, low flow:
- piston pumps
- helical rotor pumps
- diaphragm pumps

TYPES OF PUMPS

-Air Lift pumps:

- No moving parts - moves water by compressed air
- Low head, low flow
- Air is injected in the lower part of the pipe
- The air has lower density than the liquid so rises quickly
- Water is taken in the rising air flow
- Efficiency 35% to 55%

PUMP SET UP

(AgGuide ch. 10)
©For long, reliable service, pumps must be set up properly:

- Secure footing
- Properly aligned
- Pipes properly fitted
- Not too high above water level (NPSHR) (guide: less than 5m)
- Minimum pipe bends
- Constantly rising pipe especially suction
- Large diameter suction pipe
-Open and close valves slowly

POWER SUPPLY OPTIONS

(AgGuide ch. 8)

© Electric motor - easy to control, efficient, cheap, reliable

- Mains power - expensive if not close to site
- Solar power - only available in sunlight, now quite cheap, need inverter, battery maybe necessary, large arrays needed for high volumes
-Petrol or diesel motors - portable, easy to vary speed, good where mains power unreliable, more expensive
-Wind power - generators, windmills
- Only good in windy locations
- Windmills slightly expensive to buy but cheap to maintain

PIPES

(AgGuide ch.9, Appendix 2)

- Simplest case: determine main pipe diameter for only one water source and outlet
- This may be all that is needed - consider stock as one mob drinking from one trough
- For multiple troughs, pipes to individual troughs can be smaller - but must be big enough to meet stock demand

TANKS
 (Farm Water AgGuide p.89-90)

- A roof helps maintain water quality, reduces sunlight and algae growth, minimises evaporation
- Where possible, locate on high ground for gravity feed to troughs
- Should have capacity to guarantee several days supply in case of failure of pump or pipeline. Rules of thumb:
- Mains electric motor - 3 days supply
- Solar electric motor - 5 days supply
- Engine driven - 5 days supply
- Windmill - 10 days supply

TROUGHS

(Farm Water AgGuide p.93-100, 106)

- 1 m of trough $=30$ cows or 130 sheep
- 1 trough can service 2 yards/paddocks
- Locate as centrally as possible to encourage even grazing
- Stock should range max 3 km flat ground, 800 m rough country

O

TROUGHS

Mobile troughs are an option

- only few required
- no scarring around supply points
- provides livestock 'cue' to move
- flushed each time it is moved

PLASTIC V CONCRETE TROUGHS

- Solid and heavy - hard for stock to shift or break
- Concrete troughs can suffer from acidic water - erodes concrete from inside of the trough
- Leads to cracks, concrete cancer, leaks
- Might expose ends of reinforcing mesh and injure animals
- Concrete keeps water cooler
- Lime can leach out of concrete into the water - reduces acidity of water
- Plastic troughs lighter, easier to work with
- Rainwater is naturally acidic - in plastic tanks with copper plumbing, copper might leach into the water - health implications
- Susceptible to damage by fire

TROUGH INSTALLATION

(Ag Guide p.99)

- Site on firm, well drained ground
- Lay concrete, gravel pad or rubber matting to prevent erosion
- Avoid gateways
- Strong float valve cover
- Need a drain plug
- Clean regularly
- Protect pipework

TROUGH GUARDS

(Ag Guide p.94)

DESIGNING A SYSTEM

Worked examples - Farm Water AgGuide ch. 13 \& 14

