

Irrigation 101 Design and management principles

Sam North NSW DPI, Deniliquin

samuel.north@dpi.nsw.gov.au

10 key principles of irrigation design and management

- 1. Have a Whole Farm Plan
- 2. Irrigation systems should suit soil types
- 3. Drainage is as important as supply
- 4. Use it to make it pay
- 5. Get your infrastructure right
- 6. Topsoil when landforming min 7.5 cm
- 7. Surface irrigation design *water on and off bays within 10-12 hours*
- 8. Sprinkler irrigation design *pipe size for min pressure; have sufficient capacity*
- 9. Commission all works to check they are built and perform as designed

10.Match crop inputs (i.e. planned yield) to your water budget

4. Use it

- Irrigation businesses are viable if total irrigation costs ≤ 25% of gross income (RMCG)
- Total irrigation costs = fixed costs + variable costs (per ML)
- Example 1
 - 600 DE = \$12,000 p.a. at \$15/DE + fixed charges
 - Usage charge = \$15/ML
 - Use 100 ML, total irrigation cost = \$12,000 + \$1,500 = \$135/ML
 - Use 600 ML, total irrigation cost = \$12,000 + \$15,000 = \$35/ML
- Example 2
 - Capital cost make up more than 50% of annualised total cost of CPLM.
 - Total costs per ML will be reduced if capital costs are spread over more ha or more ML <u>use it</u>
 - Cost:income ratio
 - winter cropping = 33%
 machine used only 50% of time
 - Summer & winter cropping = 25% machine used 2 years in every 3 66% of time

6. Topsoil when land-forming

- Production losses in cut areas are long lasting and cannot be fixed by soil amelioration
- Avoid these long-term losses by topsoiling when land-forming
- Stockpile topsoil, under-cut, and re-spread top-soil to a min depth of 7.5 cm (3")

Effect of cut and fill on rice gross margins Source: Precision Agriculture Pty Ltd (2016)

7. Surface irrigation

Get water on and off bays within 10-12 hours

Time on – flow rate per unit width of bay

• Bay size in ha should be no more than ¹/₄ flow rate in ML/day

Time off – slope, run length, friction

- Min slope = 1:2000; min 300 mm fall out of bays
- Run length < 400 m
- Drill rows parallel to slope; clean furrows and drains

Side-ditch layouts

• flow rate = head loss

Layout type	Farm	Time to cut-	Time to	Duration of
		off	drain	ponding
		(hrs)	(hrs)	(hrs)
Border check	1	16 - 18	2	18 - 20
	2	19 – 23	2 – 3	22 - 25
	3	11 – 13	3 - 4	14 - 16
Beds in bays	4	6 - 11	15 – 20	26
	5	7 – 9	5 – 29	12 - 38
	6	10	40	50
V-bays	7	6	8 – 16	14 - 22
	8	25	20	45
	9	10 - 14	35 – 46+	45 – 60+
Contour	10	10 - 12	42 – 50	54 – 60+
	11	20	38	58
	12	18	30	48
	13	16 – 20	60 +	80 +
	14	30 - 40	10	40 - 50

8. Sprinkler irrigation design

Required system capacity

- Winter crops; towable pivot on two circles = 15 mm/day
- Lucerne; one circle = 17 mm/day

Actual system capacity

 $= \frac{pump \ flow \ rate}{area \ irrigated} \times AE \times PUR$

AE = application efficiency (0.90-0.95) PUR = pump utilisation ratio

10. Match crop inputs to a water budget

Physiological potential

• 6-12 t/ha potential, but max 8 t/ha in 50% years. Therefore, target max = 8t/ha

Water budget

• 20 kg grain per ha per mm water less 50-110 mm as soil E

Nitrogen budget

• 40 kg N/ha/t of grain

Sowing rate and row spacing

• For high yielding irrigated crop (6-7 t/ha), keep row spacing < 20 cm

Further reading

Extension AUS website – for all things irrigation: https://extensionaus.com.au/irrigatingag/home

- Irrigation design <u>https://extensionaus.com.au/irrigatingag/tag/irrigation-design/</u>
- Enter "*whole farm plan*" into the search bar to find a range of good articles and sources of information

My ResearchGate site - <u>https://www.researchgate.net/profile/Sam-North/research</u>

- Matching irrigation systems to soil type on the Riverine Plains of the southern Murray-Darling Basin
- <u>Key constraints to irrigated wheat yields in the southern Murray-Darling basin</u>
- Surface irrigation
 - The effect of layouts soils and agronomy on yields of non-rice crops
 - Improving the Performance of Basin Irrigation Layouts in the Southern Murray-Darling Basin
- Sprinkler irrigation
 - Planning and Managing Centre Pivot and Linear Move Irrigation in the Southern Riverina
 - Performance of centre pivot and linear move irrigators