Optimising Pasture performance

Basil Doonan
Pinion Advisory

In reality....

Practice/capability

	Profit
Feedbase	70%
Business	40%
People	30%
Operational	15%

Hoekema, M 2002

Best versus average

Audit results - Average
The best

Q(
ดั

Linking productivity to profit

Business foundation

(EXAMPLE!!!)

Methodology vs Practice

. 11 Telstra \#Sta...
10:04 am

- Method
- Set stocked

(Base case)
- Rotational
- Random movement \square (No improvement/extra cost)
- Strategic movement (Time)
- Strategic movement (Rainfall)
- Strategic movement (Ground cover/DM)
- Strategic movement (Morphology)
- Practice/implementation
- BMP requires skill
- Anything else!

Similar cost Increasing potential

Photo
freerangebutcher
FARMING IMPACTS ON BIODIVERSITY
esustainabledish | sacredcow.info

SACREDCOW

$\bigcirc \bigcirc \nabla$

Liked by tas_ag_co and others
freerangebutcher We couldn't have said it better. Regenerative agriculture must include animals. Repost from

What's skill?

Getting the most out of your feedbase

- Work out the costs and benefits of the methods
- Set stocked
- Rotational
- Know your fodder flow
- Match your demand and supply

Work with mother nature

- Run a high stocking rate relative to carrying capacity
- Take control of the plant and animal interface

Methodology for optimising performance?

- Rotational grazing
- 50-100\% more grown
- Rest must be based on morphology (physiology)
- Quantity
- Quality
- Survival
- Increased investment
- Infrastructure
- Time/labour?
- Skill development

Plant process - Leaf stage

- Above ground

Plant process

- Below ground

Right plant right place

Species	LS for Grazing
Ryegrass	$2-3$
Cocksfoot	$3-4$
Phalaris	$4-5$
Prairie Grass	$4-5$
Fescue	$4-5$
Kikuyu	$2-5$

The process

- How all plants grow

Regrowth: Late Phase 1

- When phase 1 is almost complete:
- WSC begin to be stored again
- Roots begin actively growing
- But there's an imbalance in minerals
- At this stage, plants are very vulnerable to grazing

Regrowth: Late Phase 1 early Phase 2

- During this period:
- WSC reserves have been built up enough for plants to be grazed again
- Roots are actively growing
- Tillering starts again
- The balance between minerals in leaves becomes more in line with animal requirements

Regrowth: Late Phase 2

- When phase 2 is complete:
- WSC levels have been fully restored
- Root growth and tillering are fully active
- Overall live top growth is at a maximum
- After phase 2 quality declines due to leaf death

Quantity

Quality

Phase	NSC/DIP	RDN (\%)	Ca:P	K/(Ca + Mg)	Energy $(M J)$
$0-1$	$1: 2$	35	$1: 1$	8	20%
$1-1.5$	$1: 1$	25	$1.5: 1$	4	50%
$1.5-2$	$2: 1$	24	$2: 1$	2.5	100%
Optimal	$2: 1$	19	$2: 1$	2.2	100%

Donaghy, D and Rawnsley, R: 2016

Feed Analysis Report

DEPT PRIMARX IND E FIGHERIES
PO BOX 303 DEVONPORT

Warl Oraen: 07-09-09日 Date Recedread: 14-Aug-07 Date Reportad: 17 -2ug-07
Woxle ID:
subraittoed byy
TODF Demoseration F'axm Christoplaex faynea

Bach of your samples has been allocated a labozarory mumber and can be identified an Eollown

Tab No Youx sample identificeation Collactad dy
02-A Pasture, Ryegrass 13/08/07
Resud.

Tanat	Method	Tonter	02-A
Moieture	Wet	\%	84.1
Dry Matter	Wet	*	15.9
Crude Proseln (N x 6.25)	NTR	\% of dxy mattex	26.3
Neutrad Detergent Fibre	NIR	\% ot dry mattex	43.5
Digestibi'6ity (DMD)	NIR	\% of dry matter	86.0
Digencibidity (DOMD)	Calcuanted	* or dry makter	79.7
MetaboJ.iesble Enexgy	Caloulated	MJ//kg DM	13.2

Quality

Poor digestibility

Moderate digestibility

Excellent digestibility

Quality

Poor digestibility

Excellent digestibility

Survival

- Tillers live for roughly a year
- Overgrazing decreases energy reserves
- Plants don’t tiller
- If grazing duration is longer than 2-3 consecutive days
- Plant energy reserves depleted (less than 1 leaf)
- Regrowth is significantly compromised (10-30\%)
- If greater than 5 consecutive days
- Can lead to a 40-60\% reduction in re-growth
- And 40-50\% tiller death

Rotation or rest

- Is a function of leaf appearance rate
- Quality/quantity/survival
- Daily area fixed!
- Nonnegotiable

Animal requirements

- We use simple rules of thumb (kg DM/hd)
- Cattle
- Maintenance (Lwt/100 + 1 kg DM)
- Pregnancy (plus $1-3 \mathrm{~kg}$ DM)
- Lactation (plus 4 kg DM)
- Liveweight (for each kg Lwt add 4 kg DM)
- Sheep
- Maintenance (2 x Lwt)/100
- Pregnancy is plus (1 kg DM)
- Lactation requires plus (1 kg DM/lamb)
- Liveweight gain (plus 4 kg DM/kg LW)

The problem

Maintenance
Production
Purchased feed
Total

Total pasture utilisation /ha

Pasture/ha for maintenance
Pasture/ha for beef production
Cents per kilogram of Drymatter
DSE/ha

MJ	Pasture
18754306	1875431
6226800	622680
0	0
	2498111

$\$ 0.02$

ROC

Solution

Maintenance
Production
Purchased feed
Total

Total pasture utilisation /ha

Pasture/ha for maintenance
Pasture/ha for beef production
Cents per kilogram of Drymatter

MJ
18754306
12426800
0
---:
1875431
1242680

MLA - PDS

Lesters

Bruces

- 60 ha
- Lileah ($1,200 \mathrm{~mm}$)
- Farm resource
- Ryegrass/cocksfoot/white clover
- Red soils
- Good fertility
- 24 paddocks
- 180 Trade cattle (average 300 kg)

- 60 ha
- Stanley (700 mm)
- Farm resource
- Ryegrass/Cocksfoot/Prairie grass
- Sandy soils
- Good fertility
- 16 paddocks
- Multiple mobs/silage

Results - Physical

	Historical	PIRD Trial
Pasture eaten (kgDM/ha)	5,440	6,790
Pasture maintenance (kgDM/ha)	4,060	4,240
Pasture liveweight (kgDM/ha)	1,380	2,550
Pasture maintenance (\%)	75	62
Pasture liveweight (\%)	25	38

[^0]
Results - Economic

	Before	After
Income	$\$ 319,000$	$\$ 532,000$
Variable costs	$\$ 129,000$	$\$ 167,000$
Gross margin	$\$ 191,000$	$\$ 364,000$
Overhead costs	$\$ 119,000$	$\$ 128,000$
EBIT	$\$ 72,000$	$\$ 237,000$
RoC	1.8%	5.6%

lain Bruce 2008 Masters Paper

Practice

Results - skill

Case Study - Landfall

- Archer family
- Sheep and Cattle
- 700 mm rainfall

LANDFALL

	2011	2012	2013	2014	2015	2016	2017	2018	2019	\% Change
Total Effective Area (ha)	2,100	2,100	2,250	2,250	2,100	2,100	2,420	2,420	2,550	21\%
Irrigated Area (ha)	220	220	220	250	250	250	260	280	280	27\%
MWSR (DSE/ha)	11.8	14.1	14.3	13.3	153	15\%	14.1	14.7	15.9	42\%
AASR (DSE/ha)	17.7	21.2	21.5	20.0	27.5	27.4	28.3	29.3	31.8	80\%

Case Study - Nosswick

- Colvin family
- Sheep
- 550 mm rainfall

	2013	2014	2015	2016	2017	2018	2019	\% Change
Total Effective Area (ha)	435	435	435	435	435	435	435	0\%
Irrigated Area (ha)	200	200	200	200	200	200	200	0\%
MWSR (DSE/ha)	9.0	13.3	14.9	169	17.6	17.9	17.9	99
AASR (DSE/ha)	14.2	21.0	24.1	27.9	30.2	31.8	33.1	133\%

Case Study - Skyhaven

- Chris MacQueen
- Breeder
- 750 mm rainfall

	$\mathbf{2 0 1 4}$	$\mathbf{2 0 1 5}$	$\mathbf{2 0 1 6}$	$\mathbf{2 0 1 7}$	$\mathbf{2 0 1 8}$	$\mathbf{2 0 1 9}$	$\mathbf{2 0 2 0}$	$\%$ change
Total effective area (ha)	640	818	885	922	950	955	955	49%
Irrigated area (ha)	0	0	0	0	0	0	0	0%
Breeders	585	687	873	905	955	1008	1100	88%
MWSR (DSE/ha)	9	10	12	13	15	18	20	122%
AASR (DSE/ha)	12	12	14	19	22	26	28	133%
Profit/ha (\$)	97	190	376	560	806	812	1,000	931%
ROC (\%)	2.1	5.1	5.9	8.8	12.4	12	14	567%

recerico werme mulate the're not alone? fail to deliver

- Each year Australian golfers spend $\$ 300 \mathrm{~m}$ to upgrade their equipment
- Over the last 10 years average handicap has increased
- They're now hitting the ball further in the wrong direction
- We always tend to believe that our skills are higher than they actually are!
-That means we cant capitalise on the better clubs!

THANK YOU

[^0]: Iain Bruce 2008 Masters Paper

