Optimising Pasture performance

Basil Doonan

Pinion Advisory

In reality....

Practice/capability

	Profit	
Feedbase	70%	
Business	40%	
People	30%	
Operational	15%	

Hoekema, M 2002

Best versus average

Audit results - Average

The best

Linking productivity to profit

Methodology vs Practice

Method

- Set stocked (Base case)
- Rotational
 - Random movement _____ (No improvement/extra cost)
 - Strategic movement (Time)
 - Strategic movement (Rainfall)
 - Strategic movement (Ground cover/DM)
 - Strategic movement (Morphology)
- Practice/implementation
 - BMP requires skill
 - Anything else!

Increasing

potential

freerangebutcher We couldn't have said it better. Regenerative agriculture must include animals. Repost from Qaustainabladiak

What's skill?

Getting the most out of your feedbase

Work out the costs and benefits of the methods

- Set stocked
- Rotational
- Know your fodder flow

Work with mother nature

- Match your demand and supply
- Run a high stocking rate relative to carrying capacity
- Take control of the plant and animal interface

Methodology for optimising performance?

Rotational grazing

- ▶ 50-100% more grown
- Rest must be based on morphology (physiology)
 - Quantity
 - Quality
 - Survival
- Increased investment
 - Infrastructure
 - Time/labour?
 - Skill development

Plant process - Leaf stage

Above ground

Plant process

Below ground

Right plant right place

Species	LS for Grazing
Ryegrass	2-3
Cocksfoot	3-4
Phalaris	4-5
Prairie Grass	4-5
Fescue	4-5
Kikuyu	2-5

The process

How all plants grow

Regrowth: Late Phase 1

When phase 1 is almost complete:

- ▶ WSC begin to be stored again
- Roots begin actively growing
- But there's an imbalance in minerals

At this stage, plants are very vulnerable to grazing

Regrowth: Late Phase 1 early Phase 2

During this period:

- WSC reserves have been built up enough for plants to be grazed again
- Roots are actively growing
- ► Tillering **starts** again
- The balance between minerals in leaves becomes more in line with animal requirements

Regrowth: Late Phase 2

When phase 2 is complete:

WSC levels have been fully restored

- Root growth and tillering are fully active
- Overall live top growth is at a maximum

After phase 2 quality declines due to leaf death

Quantity

Quality

Phase	NSC/DIP	RDN (%)	Ca:P	K/(Ca + Mg)	Energy (MJ)
0-1	1:2	35	1:1	8	20%
1-1.5	1:1	25	1.5:1	4	50%
1.5-2	2:1	24	2:1	2.5	100%
Optimal	2:1	19	2:1	2.2	100%

Donaghy, D and Rawnsley, R: 2016

DEPT PRIMARY IND & FISHERIES PO BOX 303 DEVONPORT TAS 7310 Work Order: 07-08-098 Date Received: 14-Aug-07 Date Reported: 17-Aug-07

Work ID: TDDF Demostration Farm Submitted by: Christopher Haynes

Each of your samples has been allocated a laboratory number and can be identified , as follows:

Lab No Your sample identification Collected By 02-A Fasture, Ryegrass 13/08/07

Results of Analysis:

Test		Method	Daite	02-A
Moisture		Wet	s.	84.1
Dry Matter		Wet	*	15.9
Crude Propein	(N x 6,25)	NIR	% of dry matter	26.3
Neutral Deterg	ent Fibre	NIR	a of dry matter	43.5
Digestibility	(DMD)	NIR	% of dry matter	86.0
Digestibility	(DOMD)	Calculated	* of dry matter	79.7
Metabolisable	Energy	Calculated	MJ/kg DM	13,2

Quality

Poor digestibility

Moderate digestibility

Excellent digestibility

Quality

Poor digestibility

Excellent digestibility

Survival

- Tillers live for roughly a year
- Overgrazing decreases energy reserves
 - Plants don't tiller
- ▶ If grazing duration is longer than 2-3 consecutive days

Fulkerson, W.

986

- Plant energy reserves depleted (less than 1 leaf)
- Regrowth is significantly compromised (10-30%)
- If greater than 5 consecutive days
 - Can lead to a 40-60% reduction in re-growth
 - And 40-50% tiller death

Rotation or rest

Is a function of leaf appearance rate

- Quality/quantity/survival
- Daily area fixed!
 - Nonnegotiable

Measuring Pasture

Animal requirements

We use simple rules of thumb (kg DM/hd)

Cattle

- Maintenance (Lwt/100 + 1 kg DM)
- Pregnancy (plus 1-3 kg DM)
- Lactation (plus 4 kg DM)
- Liveweight (for each kg Lwt add 4 kg DM)

Sheep

- Maintenance (2 x Lwt)/100
- Pregnancy is plus (1 kg DM)
- Lactation requires plus (1 kg DM/lamb)
- Liveweight gain (plus 4 kg DM/kg LW)

The problem

Maintenance Production Purchased feed Total

Total pasture utilisation /ha

Pasture/ha for maintenance Pasture/ha for beef production

Cents per kilogram of Drymatter

DSE/ha

ROC

Solution

Maintenance Production Purchased feed Total

Total pasture utilisation /ha

Pasture/ha for maintenance Pasture/ha for beef production

Cents per kilogram of Drymatter

DSE/ha

7.9%

ROC

MLA - PDS

Lesters

- 60 ha
- Lileah (1,200 mm)
- Farm resource
 - Ryegrass/cocksfoot/white clover
 - Red soils
 - Good fertility
 - 24 paddocks
- 180 Trade cattle (average 300 kg)

Bruces

- 60 ha
- Stanley (700 mm)
- Farm resource
 - Ryegrass/Cocksfoot/Prairie grass
 - Sandy soils
 - Good fertility
 - 16 paddocks
- Multiple mobs/silage

Results – Physical

	Historical	PIRD Trial
Pasture eaten (kgDM/ha)	5,440	6,790
Pasture maintenance (kgDM/ha)	4,060	4,240
Pasture liveweight (kgDM/ha)	1,380	2,550
Pasture maintenance (%)	75	62
Pasture liveweight (%)	25	38

lain Bruce 2008 Masters Paper

Results – Economic

	Before	After
Income	\$319,000	\$532,000
Variable costs	\$129,000	\$167,000
Gross margin	\$191,000	\$364,000
Overhead costs	\$119,000	\$128,000
EBIT	\$72,000	\$237,000
RoC	1.8%	5.6%

lain Bruce 2008 Masters Paper

Practice

Results - skill

Case Study - Landfall

- Archer family
- Sheep and Cattle
- 700 mm rainfall

								-		
	2011	2012	2013	2014	2015	2016	2017	2018	2019	% Change
Total Effective Area (ha)	2,100	2,100	2,250	2,250	2,100	2,100	2,420	2,420	2,550	21%
Irrigated Area (ha)	220	220	220	250	250	250	260	280	280	27%
MWSR (DSE/ha)	11.8	14.1	14.3	13.3	15.3	15.2	14.1	14.7	15.9	42%
AASR (DSE/ha)	17.7	21.2	21.5	20.0	27.5	27.4	28.3	29.3	31.8	80%

Case Study - Nosswick

• Colvin family

- Sheep
- 550 mm rainfall

	2013	2014	2015	2016	2017	2018	2019	% Change
Total Effective Area (ha)	435	435	435	435	435	435	435	0%
Irrigated Area (ha)	200	200	200	200	200	200	200	0%
MWSR (DSE/ha)	9.0	13.3	14.9	16.9	17.6	17.9	17.9	99%
AASR (DSE/ha)	14.2	21.0	24.1	27.9	30.2	31.8	33.1	133%

Case Study - Skyhaven

Chris MacQueen

► Breeder

750 mm rainfall

	2014	2015	2016	2017	2018	2019	2020	% change
Total effective area (ha)	640	818	885	922	950	955	955	49%
Irrigated area (ha)	0	0	0	0	0	0	0	0%
Breeders	585	687	873	905	955	1008	1100	88%
MWSR (DSE/ha)	9	10	12	13	15	18	20	122%
AASR (DSE/ha)	12	12	14	19	22	26	28	133%
Profit/ha (\$)	97	190	376	560	806	812	1,000	931%
ROC (%)	2.1	5.1	5.9	8.8	12.4	12	14	567%

We're not alone?

 Each year Australian golfers spend \$300m to upgrade their equipment

Over the last 10 years average handicap has increased
They're now hitting the ball further in the wrong direction

 We always tend to believe that our skills are higher than they actually are!

That means we cant capitalise on the better clubs!

Left foundering ... many social gottens fail to improve because they over-estimate their ability to use the equipment of protessionals size Timer Woods

smuch nester that they really are Lentice industries turned their at adde

rs so that what once might have that best suits unit and

THANK YOU

bdoonan@pinionadvisory.com